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ABSTRACT
The duck curve is becoming a worldwide problem due to the rapid
introduction of photovoltaic systems. A resource aggregator (RA)
has emerged to provide flexible solutions through demand response
and aggregating prosumers. This paper proposes a deep reinforce-
ment learning based strategy of the RA that dispatches dynamic
pricing to the prosumers and schedules its battery system to im-
prove the duck curve. The results show that appropriate reward
functions can improve the standard deviation and peak-to-average
ratio of netload by up to 51.6% and 14.8%, respectively.

CCS CONCEPTS
• Hardware → Smart grid; • Computing methodologies →
Reinforcement learning.
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1 INTRODUCTION
The high penetration of solar energy to prosumers causes serious
problems such as the duck curve [1]. The duck curve is a graph of
total netload change that shows the great imbalance between peak
demand and solar generation. In recent years, a resource aggregator
(RA) has an important role to coordinate prosumers’ demand and
dispatch dynamic pricing programs as the demand response.

Previous research has been conducted on the dynamic pricing
and the aggregator’s strategy. A model-based optimization ap-
proach calculates the optimal retail prices based on demand-supply
balances [2]. However, it generally make the impractical assump-
tion of having complete knowledge about the prosumers, and the
computational cost is expensive. Recently, a reinforcement learning
(RL) and a deep RL (DRL), which are model-free approaches, have
succeeded to solve a complex problem of power systems. Lu et
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Figure 2: Prosumer model

al. have proposed a model-free RL-based dynamic pricing method
on an electricity retailer to maximize the profit for targeting the
conventional consumer [4]. To the best of our knowledge, there is
no significant study on a model-free method to improve the duck
curve by dynamic pricing and battery scheduling.

In this paper, we propose a model-free DRL-based strategy for
the RA to improve the duck curve. The proposed strategy optimizes
both the retail prices for each prosumer in the dynamic pricing
program and the RA’s battery operation. The contributions of this
paper are: (1) a DRL-based strategy is developed to optimize the
dynamic pricing and battery scheduling simultaneously and (2) a
design of the reward function is carefully explored to improve the
duck curve. Our poster shows the details and the effectiveness of
the proposed method.

2 PROBLEM SETTING
We target a hierarchical electricity market model composed of an
independent system operator (ISO), a resource aggregator (RA), and
prosumers, as shown in Fig 1. The RA aggregates prosumer’s de-
mand and joins a wholesale electricity market organized by the ISO.
The RA dispatches a dynamic pricing program to the prosumers
and sells/buys the electricity at time-varying retail prices. Further-
more, the RA has a large-capacity battery system, and it can be
charged/discharged to increase/reduce the netload. On the other
hand, the prosumers are equipped with a photovoltaic (PV) panel,
a battery, base demand, and shiftable demand, as illustrated in Fig
2. The behavior of the prosumers, i.e., the operation of the shiftable
demand and the battery, is expected to change responding to the
retail price. Note that we assume that the prosumers are myopic
and consider the current price only in the same way as [4]. Thus, if
the current retail price is high, the prosumers reduce the shiftable
demand and discharge their battery, vice versa.

This study focuses on the RA’s decision-making for DP-BS (Dy-
namic Pricing and Battery Scheduling) problem. The ISO first in-
forms the RA of the wholesale price, and the prosumers report the
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Table 1: Reward terms for improving duck curve

Reward Description

𝑟𝑑𝑢𝑐𝑘
𝑡,𝑑𝑒𝑣

= (𝐸𝑛𝑒𝑡𝑡 − 𝑒
𝑛𝑒𝑡,𝑎𝑣𝑔

𝑑
)2 Quadratic penalty of deviation from average

𝑟𝑑𝑢𝑐𝑘
𝑡,𝑑𝑖 𝑓 𝑓

= (𝐸𝑛𝑒𝑡𝑡 − 𝐸𝑛𝑒𝑡
𝑡−1 )2 Quadratic penalty of time diff. of total netload

𝑟𝑑𝑢𝑐𝑘
𝑡,𝑞𝑢𝑎𝑑

= (𝐸𝑛𝑒𝑡𝑡 )2 Quadratic penalty of total netload
𝑟𝑑𝑢𝑐𝑘
𝑡,𝑐𝑢𝑏𝑖𝑐

= sign(𝐸𝑛𝑒𝑡𝑡 ) · (𝐸𝑛𝑒𝑡𝑡 )3 Cubic penalty of total netload
𝑟𝑑𝑢𝑐𝑘𝑡,𝑛𝑜 = 0 No reward

expected netload to the RA. The RA determines the charge/discharge
amount of the RA’s battery and the retail prices for each prosumer,
after that, informing the prosumers of the retail price. The pro-
sumers decide the operation of their battery and shiftable demand
based on the retail price and report the actual netload to the RA.
Finally, the RA calculates the total netload, denoted by 𝐸𝑛𝑒𝑡𝑡 , and
trades it with the ISO. The RA learns appropriate DP-BS strat-
egy from the above interactions with the ISO and the prosumers.
Through the DP-BS, the RA aims to maximize social welfare, in-
cluding the duck curve improvement.

3 METHODOLOGY
We formulates the DP-BS problem as the Markov Decision Process
(MDP) to handle the problem by the DRL algorithm. The MDP
mainly consists of a set of state, action, and reward for each time
step 𝑡 . The agent decides the action 𝑎𝑡 based on the system state 𝑠𝑡 ,
and then, can observe the new state 𝑠𝑡+1 and reward 𝑅𝑡 .
State. We assume that the observed state consists of a time in-
dex, the wholesale prices from the ISO, the pre-announced netload
of each prosumers, the state-of-charge (SOC) of the batteries of
prosumers and the RA.
Actions. The actions taken by the RA are the retail price for each
prosumer and the operation of the RA’s battery. The action spaces
are assumed to be continuous, and the range of the retailed prices
and the battery capacity is constrained by the upper/lower bounds.
Reward design. The designing of an appropriate reward function
is critical to train the agent efficiently. The objectives of the DP-BS
are to improve the RA’s profit, the prosumer’s cost, and the duck
curve improvement. We assume that the reward function is set by
some authoritative entity such as a utility:

𝑅𝑡 = 𝜔1 · 𝑃𝑟𝑎𝑡 − 𝜔2 ·𝐶𝑝𝑟𝑜
𝑡 − (1 − 𝜔1 − 𝜔2) · 𝑟𝑑𝑢𝑐𝑘𝑡 + 𝑃 (𝜆𝑡,𝑛) (1)

where 𝜔1 and 𝜔2 are the weight parameters with the range from
0 to 1. 𝑃𝑟𝑎𝑡 is the profit of the RA by selling the electricity to the
prosumers. 𝐶𝑝𝑟𝑜

𝑡 means the total electricity cost of the prosumers.
𝑟𝑑𝑢𝑐𝑘𝑡 is a reward term to improve the duck curve. 𝑃 (𝜆𝑡,𝑛) is a
penalty function of the retail prices, which takes a high value as the
retail price approaches the upper/lower bounds. This will prevent
taking the extreme high/low prices. Note that these reward terms
are normalized so that the mean is zero and the standard deviation
is one to handle them equally. The average netload of the day 𝑑 ,
denoted by 𝑒𝑛𝑒𝑡,𝑎𝑣𝑔

𝑑
, is assumed to be predicted before the start of

the day. In this study, we define five different reward terms as 𝑟𝑑𝑢𝑐𝑘𝑡

as shown in Table 1. We will compare their performance in Sec. 4.
DRL algorithm. We train the RA agent using widely used Soft
Actor Critic (SAC) [3]. The SAC is an off-policy actor-critic DRL
method to learn a stochastic policy maximizing an entropy. We

Table 2: Results of minimum and maximum netload and av-
erage standard deviation and PAR for each day’s results with
test dataset (1st Aug. - 7th Aug.) and different reward.

Reward 𝑟𝑑𝑢𝑐𝑘
𝑑𝑒𝑣

𝑟𝑑𝑢𝑐𝑘
𝑑𝑖𝑓 𝑓

𝑟𝑑𝑢𝑐𝑘
𝑞𝑢𝑎𝑑

𝑟𝑑𝑢𝑐𝑘
𝑐𝑢𝑏𝑖𝑐

𝑟𝑑𝑢𝑐𝑘𝑛𝑜

Min netload [kWh] 70.39 36.65 61.76 63.26 39.44
Max netload [kWh] 235.28 232.48 241.10 231.63 275.42
Avg. std of netload [kWh] 19.47 32.27 28.46 24.46 40.22
Avg. PAR 1.30 1.35 1.37 1.33 1.52

choose the SAC because it has achieved the state-of-the-art perfor-
mance for continuous control tasks.

4 EXPERIMENTAL RESULTS
We implemented the simulator and the proposed algorithm in
python. The time resolution of the actions, i.e., the intervals of
DP-BS, were set to 30 min. We used the open-datasets for power
consumption [5] and PV generation [6]. We also used the wholesale
electricity prices downloaded from the California ISO. The periods
of the datasets are: the training set is from 1st to 31st July 2017;
the test set is from 1st to 7th August 2017. The RA has a 300kWh
battery system and its SOC range is from 20% to 90%.The range
of the retail prices is 1.5 times the min/max wholesale price. Both
weights of 𝜔1 and 𝜔2 were set to 0.2. We assumed that there are
ten prosumers, and they have a battery of 20, 30, or 40 kWh.

We evaluated what reward terms 𝑟𝑑𝑢𝑐𝑘𝑡 are most effective in
improving the duck curve. The evaluation metrics for improving
the duck curve are the average of the standard deviation and PAR
(Peak to Average Ratio) of the netload for each day, in addition to
the minimum and maximum netload. Table 2 shows the results for
one week using the model well trained with one month of training
data. From Table 2, we can see that the proposed method achieves
the best standard deviation and PAR when 𝑟𝑑𝑢𝑐𝑘

𝑡,𝑑𝑒𝑣
is set, which can

improve 51.6% and 14.8%, respectively, compared to the case with
𝑟𝑑𝑢𝑐𝑘𝑡,𝑛𝑜 . The main reason for that is to increase the minimum netload
by minimizing the deviation from the average netload.

We conclude that the proposed method can improve the duck
curve in terms of both the standard deviation and the PAR. Fu-
ture work includes developing the multi-agent RL integrating pro-
sumer’s control for further improving the duck curve.
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