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PAPER
Thermal-comfort Aware Online Co-scheduling Framework for
HVAC, Battery Systems, and Appliances in Smart Buildings∗∗

Daichi WATARI†a), Nonmember, Ittetsu TANIGUCHI†b), Member, Francky CATTHOOR††,†††c),
Charalampos MARANTOS††††d), Kostas SIOZIOS†††††e), Elham SHIRAZI††,†††∗f),

Dimitrios SOUDRIS††††g), Nonmembers, and Takao ONOYE†h), Member

SUMMARY Energy management in buildings is vital for reducing elec-
tricity costs and maximizing the comfort of occupants. Excess solar gen-
eration can be used by combining a battery storage system and a heating,
ventilation, and air-conditioning (HVAC) system so that occupants feel com-
fortable. Despite several studies on the scheduling of appliances, batteries,
and HVAC, comprehensive and time scalable approaches are required that
integrate such predictive information as renewable generation and thermal
comfort. In this paper, we propose an thermal-comfort aware online co-
scheduling framework that incorporates optimal energy scheduling and a
prediction model of PV generation and thermal comfort with the model
predictive control (MPC) approach. We introduce a photovoltaic (PV) en-
ergy nowcasting and thermal-comfort-estimationmodel that provides useful
information for optimization. The energy management problem is formu-
lated as three coordinated optimization problems that cover fast and slow
time-scales by considering predicted information. This approach reduces
the time complexity without a significant negative impact on the result’s
global nature and its quality. Experimental results show that our proposed
framework achieves optimal energy management that takes into account the
trade-off between electricity expenses and thermal comfort. Our sensitiv-
ity analysis indicates that introducing a battery significantly improves the
trade-off relationship.
key words: energy management system, model predictive control, real-
time co-scheduling, thermal comfort, PMV, PV forecasting, HVAC, battery
system, smart appliances
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1. Introduction

To achieve a sustainable future, an energy management sys-
tem (EMS) plays the most critical role in such smart energy
systems as smart homes and smart buildings [1]. The elec-
trical load of smart energy systems often includes a pho-
tovoltaic (PV) panel, a battery system, and appliances. An
EMScoordinatelymanages such equipment and provides key
functions to effectively use renewable generation for such
purposes as cost-minimization and thermal-comfort maxi-
mization. In addition, ease of access to valuable weather
forecasts, demand load, and PV generation through internet
connections and the internet of things (IoT) enables an EMS
to act as the core of an energy infrastructure that satisfies
occupants’ preferences in real-time.

Heating, ventilation, and air-conditioning (HVAC) sys-
tems account for a significant proportion (> 40%) of a build-
ing’s energy consumption [2]. HVAC systems also affect the
thermal comfort of the occupants, which influences their
productivity and health. Therefore, the main concerns of
the building’s occupants are to simultaneously reduce their
electricity expenses and maximize their thermal comfort by
controlling the HVAC systems. The combination of PV
generation and a battery system maintains thermal comfort
without compromising electricity costs. For example, when
electricity prices are high, PV generation can meet HVAC
demand. When a battery system is fully charged, the flex-
ibility of HVAC control is greatly enhanced. Therefore,
co-scheduling all energy subsystems, including PV panels,
battery storage system, and HVAC, is becoming more attrac-
tive.

Many studies have been reported on the scheduling of
equipment in buildings. Qayyum et al. proposed optimal
scheduling of such time-deferrable appliances as dishwash-
ers and tumble dryers by basing PV generation on mixed-
integer linear programming (MIP) [3]. Telouw et al. devel-
oped a multi-objective MIP problem to optimize operation
costs and CO2 emissions by scheduling electrical energy
storage and heat storage in a smart community [4]. Duman
et al. also formulated an MIP-based home EMS to perform
a day-ahead load scheduling, focusing on HVAC, batteries,
PV generation, and electric vehicles, to minimize system
costs and maximize thermal comfort [5]. However, apply-
ing these day-ahead approaches in the real world can lead to
unexpected cost increases due to such uncertainties as load
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demand and renewable energy.
To address the uncertainties, online optimization tech-

niques are gaining attention. Model predictive control
(MPC) is one of the promising schemes to optimize EMS op-
erations with future information. This approach iteratively
computes optimal control based on system predictionmodels
and forecasting information at every time step. Abreu et al.
developed a hierarchicalMPC for a buildingEMS (BEMS) to
coordinately schedule many controllable loads and demon-
strated the robustness of the MPC strategy [6]. Cui et al. fo-
cused on aMIP-based receding horizon approach to optimize
battery and HVAC operations for cost reduction [7]. Perez et
al. proposed a centralizedMPC scheme tominimize the peak
demand of HVAC and time-defferable appliances [8]. Killan
et al. presented a comprehensive approach for a home EMS
based on a mixed-integer quadratic programming (MIQP)
-based MPC for the maximization of renewable utilization,
cost minimization, and thermal-comfort improvement [9].
However, these works still do not consider any specific fore-
casting method for renewable generation or assume impos-
sible situations where the amount of renewable generation
is completely known in advance. In addition, they focus on
HVAC scheduling as an energy-reduction problem without
addressing thermal comfort. Therefore, a comprehensive
and time-scalable approach must incorporate predictive in-
formation for renewable generation and thermal comfort.

In this paper, we develop a thermal comfort aware online
co-scheduling framework for a smart building by extending
the energy management framework proposed in [10]. The
work [10] proposed the dual time-scale approach that di-
vides the time-scale into coarse- and fine-grained scales to
consider both slow and fast dynamics. They also employed
the MPC structure which can obtain the optimal schedules
for appliances and a battery system in real-time using PV
forecasting model. However, the work [10] only focuses
on minimizing the electricity expense and does not consider
thermal comfort, which is an important factor in the build-
ing. To address this issue, we extend the approach [10]
to consider thermal comfort by introducing HVAC schedul-
ing with a thermal-comfort model. The objective of our
proposed method is to minimize electricity expenses and
maximize thermal comfort, balancing the trade-off between
them. We model the building thermal dynamics and HVAC
system and introduce the thermal-comfort estimation model
that predicts an optimal temperature set-point. The HVAC
scheduling is mathematically formulated and integrated into
the optimization flow of the framework. Thus, the main
contribution of this work is to achieve better trade-off rela-
tionships between electricity expenses and thermal comfort
by integrating the HVAC scheduling into the multi time-
scale energy management framework. Finally, the proposed
framework effectively combines two prediction models, the
PV forecasting model and the thermal-comfort model, and
three coordinated optimization problems covering slow and
fast system dynamics.

The remainder of this paper is organized as follows.
Section 2 explains our proposed co-scheduling framework.

Optimizer

PV-forecasting 
model

Therma-
comfort model

Weather, 
elec. price,
load info.

Input

Solve and apply
Battery
system

Router

Non-shiftable 
appliances

Wasted

PV
panel

Shiftable appliances

Purchase

Smart building model

HVAC

Fig. 1 Schematic view of online energy management framework

Section 3 describes a mathematical formulation of the dual
time-scale optimization problem. Section 4 shows simula-
tion results that demonstrate the effectiveness of our pro-
posed method, and finally Section 5 concludes this paper.

2. Proposed Co-scheduling Framework

Fig. 1 overviews our framework whose key idea is the
iteration of prediction and optimization at different time
scales. First, the framework obtains PV-power forecasting
and thermal-comfort estimation in the very near future, e.g.,
the next day. It then optimizes the schedules of energy sub-
systems, including appliances, a HVAC, and a battery sys-
tem, whose time resolution is coarse-grained, such as 15min,
to reduce computational complexity. After that, a short-term
scheduling loop incorporates the solution at a fine-grained
resolution. The optimization problem is mathematically for-
mulated and solved by an optimization solver. Finally, the
obtained schedules are applied to the target system. Al-
though our previous work developed an online energy man-
agement framework [10], this paper extends it to control a
HVAC system with thermal-comfort estimation to minimize
electricity expenses and maximize thermal comfort.

2.1 System model

Smart building structure Fig. 1 shows our smart building
model. We assume a smart building that is comprised of
PV panels, a battery storage system to store surplus PV gen-
eration, appliances, including non-shiftable/shiftable types,
and a HVAC. The power/energy flow inside a household is
assumed to be managed by a smart inverter-based control
system, denoted by an energy router [11, 12]. This building
only buys electricity from the power company through a util-
ity grid during power shortages. Surplus energy is charged
to the battery system, and when batteries are completely
charged, the excess energy is wasted instead of being sold to
the grid. Since a reverse power flow often destabilizes power
grids, our model maximizes PV utilization.
PV forecasting PV generation has high fluctuation due
to meteorological stochastic phenomena. Thus, a PV-
generation forecast is necessary to balance demand and en-
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Fig. 2 Thermal equivalent circuit model of buildings

ergy production. We used the forecast data provided by the
PV-nowcasting model [13], which can predict short-term
generation based on sky images, neural network (NN) mod-
els, and a highly accurate physics-based modeling frame-
work [14]. The model can predict power output at one-
second granularity every minute for 15 minutes horizons,
which enables the maximum utilization of PV generation.
Day-ahead PV forecasting over 24 hours is also required
to efficiently schedule battery and demand loads. In this
study, we manually generated forecasting profiles by adding
Gaussian noise to the ground-truth. Note that in the future
such day-ahead forecasts will be readily available from me-
teorological information providers. These two PV forecasts
provide sufficient planning for online energy management.
Battery We used an equivalent circuit model [15] as a
liquid-state lithium-ion battery model, which can accurately
predict battery runtimes and nonlinear I-V characteristics
based on the battery’s state of charge (SOC). We integrated
an equivalent circuit model into the optimization problem
to address accurate battery dynamics. This step reduces the
charge/discharge energy loss and enables accurate estimation
of the battery’s internal state.
Appliance model We consider two sets of appliances: non-
shiftable (the starting time cannot be deferred) and shiftable
(it can be shifted to other time slots). The framework also op-
timizes the shiftable-appliance schedule with the constraints
of user preferences to minimize electricity expenses. Each
shiftable appliance is characterized by four parameters [16]:
(1) operating time, (2) configuration time, which denotes
when to start the appliance, (3) deadline, which denotes
the time by which its operation must be completed, and (4)
power profiles. Shiftable appliances must be scheduled from
their configuration times until their deadlines. We optimize
the schedule of shiftable appliances to minimize electricity
expense.
Building thermal dynamics and HVAC modelWedescribe
a building’s thermal dynamics with a thermal equivalent
circuit model [17] (Fig. 2). In the model, the building’s
thermal behavior is analogous to its electrical behavior. Let t
be a time index. The building characteristics are represented
by thermal resistance R and thermal capacity C, and these
values are identified based on building data sheets. Here
time constant τ shows the thermal response speed:

τ = R · C (1)

In the model, the indoor temperature for next time T in
t+1 can

be calculated:

Optimal set-point

Fitted
Historical data

P
M

V

Indoor temperature [℃]

Fig. 3 Example of linear regression model for PMV

T in
t+1 = (1− ∆t

τ
) · T in

t

+
∆t

τ
· {T out

t − 1000 ·R · (QAC
t +Qgain

t )} (2)

where∆t is the length of the time resolution. T out
t is the out-

door temperature, QAC
t is the thermal gain due to a HVAC

system, and Qgain
t refers to such thermal gain as solar irra-

diation and internal heat. The relationship between HVAC’s
thermal gain and electrical power is given:

QAC
t = −PAC · COP · ut (3)

where PAC and COP are the rated power and HVAC’s co-
efficient of performance. We assume that HVAC includes an
inverter system whose output can be continuously controlled
from 0% to 100%. Then, the manipulated variable ut is in-
troduced and scheduled in a range from 0 (0%) to 1 (100%).
Finally, the power consumption of the HVAC Dhvac

t at time
t is calculated by:

Dhvac
t = PAC · ut (4)

2.2 Thermal-comfort estimation

To improve the thermal comfort for building zones, we in-
troduce Fanger’s predicted mean vote (PMV) and predicted
percentage of dissatisfied (PPD) index [18], both of which
are widely adopted for real applications. The PMV is an
index that shows a scale of occupants thermal sensation, and
it ranges from -3 (too cold) to +3 (too warm). The PMV
can be calculated by a nonlinear complex function based on
environment and occupant parameters, e.g., indoor tempera-
ture, humidity, metabolic rate, and clothing insulation. Once
the PMV is calculated, the PPD, which is a percentage of
people that feels thermal discomfort in the indoor space, is
derived from the following empirical equation [18]:

PPD = 100− 95(−0.03353·PMV 4−0.2179·PMV 2) (5)

When the PMV is 0.0, the PPD is minimum (5%), i.e., this
indoor space is the most comfortable for occupants. Since
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our framework controls the indoor temperature by HVAC
scheduling, approximating Fanger’s model (PMV) as a func-
tion of the thermal zone’s temperature is sufficient.

To estimate the comfort of indoor temperature, we em-
ploy the following linear regression (LR) model from a pre-
vious work [19]:

PMVt = θ0t + θ1t · T in
t (6)

where θ0t and θ1t are the weight coefficients of the LR model.
Themain idea of this previousmodel [19] is to efficientlyma-
nipulate historical data in the construction of the LR model.
Fanger’s factors (e.g., metabolic rate and clothing) are almost
constant for the last few days, while such environmental fac-
tors as humidity and air velocity are generally similar for a
given time slot between consecutive days. Therefore, the LR
model is built for each time step, and the weight coefficients
θ0t , θ

1
t are refined for each time step using only the latest

historical data of the last x days and a near time window (-y
∼ +y steps of the same time).

An example of the LR model for PMV is shown in
Fig. 3. The PMV is fitted as the LR model based on the his-
torical data points. The optimal temperature set-point is the
temperature where the PMV is 0.0. Following ASHRAE’s
55 standards [20], PPD’s acceptable limit is less than 10%,
which corresponds to a PMV of ±0.5. From the model (6),
we can obtain the optimal temperature set-point T set

est,t, and
the upper/lower bounds, denoted by Tupper

est,t / T lower
est,t :

T set
est,t = −θ0t /θ

1
t (7)

Tupper
est,t = (−θ0t + 0.5)/θ1t (8)

T lower
est,t = (−θ0t − 0.5)/θ1t (9)

These values are used in the objective function and in the
constraints of our optimization problem.

3. Dual Time-scale Optimization

Fig 4 shows the dual time-scale optimization flow of the
proposed framework. It is comprised of multiple optimiza-
tion stages for each purpose, considering two different time

scales: coarse- and fine-grained. In this way, we simulta-
neously deal with long- and short-term system dynamics,
which allows great reduction of the time complexity while
maintaining high solution quality. In this framework, we
also employ an MPC approach to tackle forecast errors and
considered the latest system states. MPC’s key idea is the
iteration of forecasting and optimization [21]. First, future
control inputs over the planning period are obtained by solv-
ing the optimization problem based on system models and
forecast information. After that, the only first-sample solu-
tion is applied, and the optimization is iterated by shifting
the planning period back one step. Its feedback structure can
potentially compensate for the uncertainty of the variation
of load demand and PV-forecasting errors.

Let Tc and Tf be the planning periods of the coarse-
and fine-grained time scales. Let ∆tc and ∆tf be the time
resolutions of the coarse- and fine-grained time scales. In
accordance with the MPC, the framework iterates the fol-
lowing process every internal period, e.g., 15 min. First, the
PV-forecasting and comfort-estimation models provide pre-
dictive information. Then the appliance scheduling (AS) de-
cides the shiftable-appliance schedule. Next the thermal and
battery scheduling (TBS) calculates the battery and HVAC
schedules. These schedules are obtained for a long period
of Tc (e.g., 24 hours), with coarse-grained resolution ∆tc
(e.g., 15 min). For a long planning period, PV forecasting is
roughly performed: history-based prediction. After that, a
fine-grained energy scheduling (FES) provides precise con-
trol for a short period, ∆tf (e.g., 15 min) with resolution
∆tf (e.g., 1 sec). Based on the above procedures, real-time,
comprehensive energy management is achieved that deals
with appliances, HVAC, and a battery storage system.

Note that this paper employs the dual time-scale ap-
proach proposed in the literature [10]. According to the
literature, the dual time-scale scheme drastically reduces the
total time steps. If only one time-scale scheme is employed,
the planning period will be typically 24 hours with 1 sec res-
olution (86400 steps) to capture both fast and slow system
dynamics. Meanwhile, in the dual time-scale, the AS and
the TBS typically have 96 steps (24 hours period with 15
min resolution), and the FES have 900 steps (15 min period
with 1 sec resolution). The total time step of the proposed
framework is reduced up to 96 times compared to the one
time-scale scheme. In this way, the proposed framework can
reduce the time complexity. On the other hand, this approach
divides the coarse-grained optimization into two problems,
AS and TBS, based on the literature [10]. This is because the
considerable time scale of each device is different; the appli-
ance scheduling and demand load with daily cycle require a
long planning period of at least 24 hours to obtain an optimal
solution, while the battery and the HVAC have shorter time
constants than the appliances, and the fine-grain time scale
also should be considered. Thus, the proposed framework
firstly performs the AS and secondly performs the TBS and
the FES, following the order of a length of the time scale. In
terms of the time scale differences, this problem split is a rea-
sonable assumption, and we have also succeeded in further
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reducing computational time.
Due to space limitations, we primarily discuss the ex-

tended part of the framework in the following section; refer
to the literature [10] for detailed formulation of the AS and
FES.

3.1 Appliance scheduling

In the AS, the ON-OFF schedules of shiftable appliances
are optimized by solving the MIP problem. To capture such
long-term system dynamics as PV generation and electric-
ity prices, Tc and ∆tc are typically set for 24 hours and 15
min. The main concern of a smart building’s occupants is
electricity expenses. Therefore, our objective function is to
minimize them, and the AS solution contains optimal sched-
ules for shiftable appliances and energy purchases from the
utility grid. Note that HVAC and battery scheduling are
omitted and solved in the next problem, and this decom-
position significantly reduces the time complexity. Only
appliance schedules are employed, and the rest are discarded
and recalculated in the following problem.

3.2 Thermal and battery scheduling

The TBS achieves optimal HVAC and battery scheduling
for the same time scale as AS. Its input obtained from the
other part of the framework includes the shiftable-appliance
schedules obtained by theASDshft

tc and optimal temperature
set-points T set

est,tc with upper/lower bounds T
upper
est,tc /T

lower
est,tc

discussed in Section 2.2. The mathematical formulation of
the TBS is described as follows:

Given

{Gtc , D
base
tc , Dshft

tc , ξtc , T
set
est,tc ,

Tupper
est,tc , T

lower
est,tc , Otc , Q

gain
tc , T out

tc }, ∀tc
Find

{Etc , Ytc , utc , stc , I
bat
tc }, ∀tc

Minimize

ω · Jcost + (1− ω) · Jcomfort + Pe

Tc∑
tc=0

stc (10)

Subject to

(1)− (4), ∀tc

Jcost =

∑Tc

tc=0 ξtc · Etc

Billmax
(11)

Jcomfort =

∑Tc

tc=0 Otc · (T in
tc − T set

est,tc)
2

|T error
max |

(12)

T lower
est,tc − stc ≤ T in

tc ≤ Tupper
est,tt + stc , ∀tc (13)

0 ≤ stc , ∀tc (14)
Etc +Gtc +Btc

= Dbase
tc +Dshft

tc +Dhvac
tc + Ytc , ∀tc (15)

0 ≤ Etc , ∀tc (16)
0 ≤ Ytc , ∀tc (17)

Ibatmin ≤ Ibattc ≤ Ibatmax, ∀tc (18)

SOCtc+1 = SOCtc −
Ibattc ·∆tc

Cnom
, ∀tc (19)

SOCmin ≤ SOCtc ≤ SOCmax, ∀tc (20)
V bat
tc = f(Ibattc , SOCtc), ∀tc (21)

Btc = Ibattc · V bat
tc , ∀tc (22)

For the inputs of this problem, Gtc is the PV generation,
Dbase

tc is the demand load of the non-shiftable appliances,
ξtc is the electricity, and Otc is the occupied information:
Otc = 1 if the room is occupied, otherwise 0. The de-
cision variables of this problem are the energy purchased
from the utility Etc , the wasted energy Ytc , the manipu-
lated variable of the HVAC utc , the slack variable stc to
avoid a violation for the comfort temperature range, and the
battery current Ibattc which takes a positive/negative value
when discharging/charging. In the objective function (10),
the first term Jcost, which is defined by the equation (11),
indicates electricity expenses. The second term Jcomfort,
which is defined by the equation (12) means the error be-
tween the indoor temperature and the optimal set-point. ω
is a weight parameter to control the trade-off between Jcost
and Jcomfort. These functions are normalized by possible
maximum values Billmax and T error

max to treat them equally
in the weighted sum [22]. The third term in the objective
indicates the penalty term that prevents the room tempera-
ture from violating the comfort temperature range. Pe is a
large penalty constant (e.g., set to 1000) for a temperature
violation. stc is a non-negative slack variable that represents
the excess value when T in

tc exceeds limits T
upper
est,tc or T

lower
est,tc ,

and these constraints are defined by the equations (13) and
(14). ξtc denotes the electricity price per energy. Finally,
the objective of this problem is to minimize the electricity
expenses and maximize the thermal comfort.

We explain the other constraints of this problem (15) -
(22). WhereBtc denotes the charging/discharging energy of
the battery, which takes a positive value when discharging
and a negative value when charging. Ibatmin and Ibatmax are the
maximum charging and discharging current of the battery.
SOCtc is the SOC level of the battery, i.e., the amount of
energy available in the battery expressed by a proportion,
ranging from 0 (0%) to 1.0 (100%). SOCmin and SOCmax

is the lower and upper bounds of the SOC level decided by
the user. Cnom is the nominal Ah capacity of the battery,
and V bat

tc denotes the terminal voltage of the battery. The
equation (15)means that the energy balance inside the system
must be kept at any time. The constraints (16) and (17) show
that the purchased energy and the wasted energy only take a
positive value. The equation (18) shows that the range of the
battery current Ibattc is constrained by its lower/upper bounds.
The equation (19) calculates the battery’s SOC level at the
next time step based on the battery current Ibattc , and the range
of the SOC level is constrained by the lower and upper bounds
in the equation (20). In the equation (21), the terminal
voltage of the battery V bat

tc is calculated by the function f
of the battery current and the SOC level, and this function
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is given by the literature [15]. The equation (22) shows that
the battery charging/discharging energy is calculated based
on the battery current and the terminal voltage.

The TBS achieves co-scheduling of the HVAC and a
battery system. Since batteries greatly impact energy usage,
this co-scheduling provides more flexibility to the trade-off
between electricity expenses and thermal comfort. Since
an accurate battery model includes nonlinear equations (21)
and (22), this problem has to be dealt with by a nonlinear
programming (NLP) solver. Then the obtained battery power
trajectory is utilized as reference values in the FES.

3.3 Fine-grained energy scheduling

The FES realizes short-term energy management to interpo-
late the coarse-grained schedules of the other two problems.
We formulate the NLP problem to minimize the mismatch
between demand and PV generation. The PV-nowcasting
model provides the forecast profiles of the PV-power gener-
ation. An equivalent circuit battery model is integrated to
capture the transient energy loss. The FES usually employs
15-min periods as Tf , because the PV forecast-accuracy de-
grades significantly when the prediction period exceeds 15
min [13]. Besides, the time complexity of the FES increases
as the planning period increases. In terms of both forecast
accuracy and time complexity, the appropriate length of the
planning period is 15 min. Time resolution ∆tf is set to
1 sec to consider battery dynamics, whose time constant is
usually a few seconds. We also introduce a constraint to
ensure that the battery power does not deviate greatly from
the reference battery power provided by TBS. We also apply
a precise battery power schedule optimized by FES to the
targeted system.

4. Simulation Results

To demonstrate the effectiveness of our proposed framework,
we conducted a five-day simulation experiment in August.
Our target system is a smart building, which has a contract for
real-time electricity pricing, and we use actual price profiles

from ComEd, US [23]. The PV panel’s peak power is set to
4 kWp, and the PV forecast’s average error is 25% for long-
term and 12% for short-term usages [13]. The battery size
is 4 kWh, and the circuit model’s parameters were chosen
from a previous work [15]. The average daily total demand
is 18 kWh without HVAC. We use the DRED dataset as
demand profiles for non-shiftable and shiftable appliances
[24]. Three shiftable appliances include a dishwasher, a
clothing washer/dryer, and an EV charger, all of which are
scheduled once a day. The rated power and the HVAC’s COP
are 2 kW and 2.5. We use the historical thermal-comfort data
from a public survey dataset [25], which contains the PMV
levels for 24 office occupants for a whole year. The weather
conditions are assumed to be the hottest sunny days in a
Japanese summer, in which the average temperature is 28◦C.
We assume that the target residential building is occupied all
day from 8 am to 12 pm and 1 pm to 6 pm.

The following are the parameters of the proposed frame-
work: Tc = 24 h,∆tc = 15min, Tf = 15min, and∆tf = 1
s. Thus, the optimization flow in Fig. 4 is executed every
15 min. Weight coefficients ω are changed within a range of
0∼1. For the time window of the thermal-comfort estima-
tion, x and y are set to 15 and 3, like in a previous work [19].
CPLEX v20.1 and IPOPT v3.14 are used as the MIP and
NLP solvers. Note that the total solution time for the three
optimization problems averages less than 10 sec on amodern
laptop PC (Intel Core-i7 6600U CPU with 2.60-GHz clock
frequency and a 16 GB of DDR3 RAM). Therefore, the so-
lution can be obtained in real-time, even with solvers that are
not fully optimized for runtimes.

We compared the proposed framework with a method
that employed a fixed set-point for indoor temperatures
[7,26]. The proposed framework adaptively decides the tem-
perature set-points based on thermal-comfort estimation, and
the weight coefficients for the objective function are changed
from 0.1 to 0.9. The fixed set-point scheme employs a dual
time-scale MPC without HVAC co-scheduling i.e., the dif-
ference between the proposed method and the fixed set-point
method is only the temperature set-point. The HVAC is
controlled with a fixed set-point, so that the indoor temper-
ature adheres to the set-point as much as possible. Table 1
shows the results of the total electricity expenses and average
PPD as a comfort criterion over five days. For the proposed
method, the weight coefficients control the importance of the
electricity expenses and the average PPD. For the fixed set-
point method, the higher the temperature set-points the lower
the electricity expenses, but the higher the average PPD, i.e.,
simply reducing the HVAC operation. Fig. 5 plots the result
of Table 1 and shows the relationship between the electricity
expenses and the average PPD for the different methods. As
shown in Fig. 5, the line of the proposed method is below
the line of the fixed set-point method. This means that the
proposed framework performs a better trade-off relationship
between electricity expenses and thermal comfort than the
baseline, implying that the comfort-estimation model pro-
vides a suitable temperature set-point.

Fig. 6 shows the profiles of the indoor temperature, the



WATARI et al.: THERMAL-COMFORT AWARE ONLINE CO-SCHEDULING FRAMEWORK
7

Table 1 Results of total electricity expenses and average PPD for proposed and fixed set-point methods over five days in August

Method Proposed framework with thermal-comfort estimation

ω = 0.1 ω = 0.2 ω = 0.3 ω = 0.4 ω = 0.5 ω = 0.6 ω = 0.7 ω = 0.8 ω = 0.9

Electricity expense [¢] 248 246 244 241 238 235 232 228 225
Average PPD [%] 5.16 5.24 5.34 5.5 5.71 6.08 6.57 7.51 9.13

Method Fixed set-point method

23.0℃ 23.5℃ 24.0℃ 24.5℃ 25.0℃ 25.5℃ 26.0℃ 26.5℃ 27.0℃ 27.5℃ 28.0℃

Electricity expense [¢] 288 280 272 265 257 250 242 235 228 222 215
Average PPD [%] 18.24 13.61 10.06 7.52 5.98 5.42 5.86 7.29 9.73 13.16 17.52
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Fig. 6 Profiles of indoor temperature, electricity expenses, HVAC power consumption, and battery power (negative battery power denotes charging, and
vice versa) with different weights for second day

electricity expenses, the HVAC power consumption, and the
battery power with different weight coefficients. Depending
on the value of weights ω, three modes, Eco, Balanced, and
Comfort, correspond to ω = 0.1, 0.5, and 0.9. The indoor
temperature result shows that temperature set-point T set

est,t,
upper bound Tupper

est , and lower bound T lower
est adaptively

changed with time, and the indoor temperature is controlled
as intended by themode. From the bottom three figures, elec-
tricity is mainly purchased around 3 am and 12 pm when its
price (black dotted line) is low. The HVAC system is also
used much more during low price periods at noon and before
the occupants arrive. The battery system is charged during
low price periods (3 am and 10 am) and discharged during
high price periods (1 pm to 7 pm). Remarkably, for differ-
ent modes, the electricity expense is almost identical from
2 pm to 5 pm, even though the HVAC power consumption
is different. This is because the battery discharge was ad-
justed to align with the HVAC operation during this high
price period. Owing to the co-scheduling of the HVAC sys-
tem and the battery, electricity expenses can be minimized
while maintaining thermal comfort. The proposed method
considers the adaptive temperature set-point as well as the
electricity price and the weight coefficients to minimize the
electricity expenses and maximize the thermal comfort.

5. Conclusion and Outlook

This paper proposed a thermal comfort aware online co-
scheduling framework for comprehensive energy manage-
ment that includes shiftable appliances, a HVAC system, and
a battery storage system in a smart building. The proposed
framework integrates the prediction model of PV genera-
tion, thermal comfort, and the optimization problem. We
formulate the problem as an MPC approach to consider the
uncertainties of PV generation and thermal condition. These
three optimization problems, which have different objectives,
are reasonably combined by decomposition into dual time-
scales. The result shows that the proposed method balanced
the trade-off between electricity expenses and thermal com-
fort.

We employed adaptive temperature set-points based on
Fanger’s model. However, in practical cases, a gap exists
between Fanger’s model and actual comfort. Therefore, one
future work will reflect the preferences of occupants based
on their choices as well as sensing information.
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