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ABSTRACT
In smart energy systems, batteries, which assume an important role

in filling the temporal gap between generation and consumption,

are expected to be a potential distributed energy resource (DER).

A resource aggregator (RA) has emerged to collect various DERs

to extract demand-side flexibility, and various methods have been

proposed based on reinforcement learning. Since battery degra-

dation is unavoidable during utilization, battery management is

required to minimize it. This paper proposes state-of-health (SOH)-

aware battery management based on deep reinforcement learning.

Our experimental results demonstrate an average battery lifetime

improvement of 11.2%.

CCS CONCEPTS
• Hardware → Smart grid; • Computing methodologies →
Planning under uncertainty.
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1 INTRODUCTION
Extracting the demand-side flexibility is a big motivation for the

stabilization of the power grid, and it will be more required for

utilizing renewable energy as much as possible. Behind-the-meter

distributed energy resources (DERs) play important extraction roles,

and resource aggregators (RAs) have emerged to concentrate vari-

ous DERs to extract demand-side flexibility. Examples of flexibility

services by RAs include ancillary services [12] and energy arbitrage

[9].
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Batteries are potential DERs for providing flexibility services

and filling the temporal gap between generation and consumption

[10]. However, batteries are unavoidably degraded during their use,

and such degradation affects their lifetime. Thus controlling battery

degradation is necessary.

Various research on RAs has been proposed, including the ag-

gregated control of electric vehicles (EVs), heating, ventilation,

and air conditioning (HVAC), etc. Yi et al. proposed an EV aggre-

gation method based on mathematical programming [11]. Liu et

al. proposed a battery aggregation method based on an optimal

scheduling approach [4]. Iacovella et al. proposed a HVAC aggre-

gation method using a three-step optimization scheme [3]. These

researches demonstrated the efficiency of DER aggregation. How-

ever, these approaches require detailed models; based on reinforce-

ment learning, model-free approaches have recently been proposed

[2, 6, 8].

Qian et al. proposed an EV aggregation method to minimize the

total driving time and the EV-charging cost [6]. Qian’s method sup-

ports the different characteristics of EVs and also demonstrated the

efficiency of deep reinforcement learning. Taboga et al. proposed

an energy management framework, which covers RAs and mul-

tiple prosumers [8]. Taboga’s method mainly targeted the HVAC

of individual prosumers and achieved peak power shaving while

simultaneously maintaining acceptable comfort levels. Sanchez et

al. proposed a battery aggregation method based on deep reinforce-

ment learning for grid stability [2]. Their method assumed that

battery charge/discharge is managed by RA without addressing

battery degradation.

This paper proposes a state-of-health (SOH)-aware battery man-

agement method based on deep reinforcement learning. Our pro-

posed aggregation method realizes the battery aggregation to real-

ize the flexibility requirement and to minimize the battery degrada-

tion based on Millner’s SOH model [5]. Our experimental results

demonstrate the effectiveness of our proposed method.

The rest of our paper is organized as follows. Section 2 explains

the systemmodel, and Section 3 formulates the problem as aMarkov

Decision Process (MDP) and solves it with a deep reinforcement

learning algorithm. Experimental results are described in Section 4,

and Section 5 concludes this paper.

2 SYSTEM MODEL
2.1 System Overview
Figure 1 represents a system overview of this research. The system

model is composed of a balancing market, a resource aggregator

(RA), and 𝑁 prosumers. For the given requirements from the bal-

ancing market, the RA sends orders to all the prosumers, and the

net demand is updated due to the battery charge/discharge changes
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Figure 1: SystemOverview
Figure 2: Prosumer Model

made by them. These responses are aggregated as flexibility, and

requirements are satisfied when aggregation has succeeded. The

research question of this paper investigates how to aggregate the

flexibility considering the degradation of each prosumer’s battery.

Let 𝑆𝑡 , 𝐹
𝑟𝑒𝑞
𝑡 , and 𝑂𝑖,𝑡 be the required type of flexibility at time 𝑡 ,

its required amount at time 𝑡 , and the prosumer orders, respectively.

Required type 𝑆𝑡 takes 1 in upward demand cases, -1 in downward

demand cases, and 0 when nothing is required. Required amount

𝐹
𝑟𝑒𝑞
𝑡 represents the ratio over the maximum flexibility of the pro-

sumers. Order𝑂𝑖,𝑡 ∈ [−1, 1] to prosumer 𝑖 also represents the ratio

over the maximum charge/discharge amount of prosumer 𝑖 .

The prosumers respond by battery charge/discharge changes

based on order 𝑂𝑖,𝑡 . When the change of the net demand of pro-

sumer 𝑖 is represented as Δ𝐸𝑖,𝑡 , the aggregated flexibility is repre-

sented by

∑
𝑖 Δ𝐸𝑖,𝑡 = 𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 . Thus, the requirement is satisfied in

case |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 | = 𝐹𝑟𝑒𝑞𝑡 .

2.2 Prosumer Model
Figure 2 shows a prosumer model, which is composed of a PV panel,

demand from home appliances and a battery, and a controller that

manages the power flow. Let 𝐺𝑖,𝑡 , 𝐿𝑖,𝑡 , 𝐵𝑖,𝑡 , and 𝐸𝑖,𝑡 be the PV

generation, the demand, the battery charge, and the purchased

energy, respectively. Then the following equation must hold:

𝐺𝑖,𝑡 + 𝐸𝑖,𝑡 = 𝐿𝑖,𝑡 + 𝐵𝑖,𝑡 . (1)

Notice that 𝐵𝑖,𝑡 and 𝐸𝑖,𝑡 are bidirectional. The negative values of

𝐵𝑖,𝑡 and 𝐸𝑖,𝑡 represent the battery discharge and selling energy.

Let 𝐵
𝑐𝑎𝑝

𝑖
, 𝐵

𝑚𝑎𝑥,𝑐ℎ
𝑖

, 𝐵
𝑚𝑎𝑥,𝑑𝑖𝑠𝑐ℎ
𝑖

, and 𝑆𝑂𝐶𝑖,𝑡 be the battery capacity,

the maximum charge amount, the maximum discharge amount, and

the state-of-charge of prosumer 𝑖’s battery at time 𝑡 , respectively.

Then the following formulas must hold:

𝑆𝑂𝐶𝑖,𝑡+1 = 𝑆𝑂𝐶𝑖,𝑡 + 𝐵𝑖,𝑡/𝐵𝑐𝑎𝑝𝑖
, (2)

𝐵
𝑚𝑎𝑥,𝑑𝑖𝑠𝑐ℎ
𝑖

≤ 𝐵𝑖,𝑡 ≤ 𝐵
𝑚𝑎𝑥,𝑐ℎ
𝑖

. (3)

Whenwe denote𝐵
𝑟,𝑐ℎ
𝑖,𝑡

and𝐵
𝑟,𝑑𝑖𝑠𝑐ℎ
𝑖,𝑡

as the available charge/discharge

amount at 𝑆𝑂𝐶𝑖,𝑡 , respectively, 𝐵
𝑟,𝑐ℎ
𝑖,𝑡

and 𝐵
𝑟,𝑑𝑖𝑠𝑐ℎ
𝑖,𝑡

are defined as fol-

lows:

𝐵
𝑟,𝑐ℎ
𝑖,𝑡

= (𝑆𝑂𝐶𝑚𝑎𝑥
𝑖 − 𝑆𝑂𝐶𝑖,𝑡 ) · 𝐵𝑐𝑎𝑝𝑖

, (4)

𝐵
𝑟,𝑑𝑖𝑠𝑐ℎ
𝑖,𝑡

= (𝑆𝑂𝐶𝑖,𝑡 − 𝑆𝑂𝐶𝑚𝑖𝑛
𝑖 ) · (−𝐵𝑐𝑎𝑝

𝑖
), (5)

where 𝑆𝑂𝐶𝑚𝑎𝑥
𝑖

and 𝑆𝑂𝐶𝑚𝑖𝑛
𝑖

are the upper- and lower-bounds of

the SOC level.

For given 𝐺𝑖,𝑡 and 𝐿𝑖,𝑡 , the controller decides battery charge

amount 𝐵𝑖,𝑡 based on the following rule:

𝐵𝑖,𝑡 =

{
min(𝐺𝑖,𝑡 − 𝐿𝑖,𝑡 , 𝐵𝑟,𝑐ℎ𝑖,𝑡

, 𝐵
𝑚𝑎𝑥,𝑐ℎ
𝑖

) (𝐺𝑖,𝑡 ≥ 𝐿𝑖,𝑡 )
max(𝐺𝑖,𝑡 − 𝐿𝑖,𝑡 , 𝐵𝑟,𝑑𝑖𝑠𝑐ℎ𝑖,𝑡

, 𝐵
𝑚𝑎𝑥,𝑑𝑖𝑠𝑐ℎ
𝑖

) (otherwise) .
(6)

Then purchased power 𝐸𝑖,𝑡 is calculated by Eq. 1.

2.3 Flexibility Extraction
After receiving order𝑂𝑖,𝑡 ∈ [−1, 1] from the RA, prosumers respond

by changing their battery charge/discharge amount. If𝑂𝑖,𝑡 = 1, they

increase their demand by an additional full charge. If 𝑂𝑖,𝑡 = −0.5,
they decrease their demand by an additional half discharge. How-

ever, since the prosumers determined their battery charge/discharge

amount by Eq. 6, such received orders might fail to be satisfied due

to their battery states. For example, if a battery has already been

fully charged (𝑆𝑂𝐶𝑖,𝑡 = 1), an additional full charge due to 𝑂𝑖,𝑡 = 1

is impossible. If a battery plans to fully discharge by Eq. 6, an

additional discharge due to 𝑂𝑖,𝑡 = −1 is also impossible. In such

cases, the required flexibility cannot be satisfied due to the obvious

physical constraints. Therefore, the change of net demand Δ𝐸𝑖,𝑡 is
decided as follows:

Δ𝐸𝑖,𝑡 =

{
min(𝑂𝑖,𝑡 · 𝐹𝑚𝑎𝑥

𝑖
, 𝐵

𝑟,𝑐ℎ
𝑖,𝑡

, 𝐵𝑎𝑣𝑙,𝑐 ) (𝑂𝑖,𝑡 ≥ 0)
max(𝑂𝑖,𝑡 · 𝐹𝑚𝑎𝑥

𝑖
, 𝐵

𝑟,𝑑𝑖𝑠𝑐ℎ
𝑖,𝑡

, 𝐵𝑎𝑣𝑙,𝑑 ) (otherwise)
(7)

where 𝐵𝑎𝑣𝑙,𝑐 and 𝐵𝑎𝑣𝑙,𝑑 are defined as follows:

𝐵𝑎𝑣𝑙,𝑐 = 𝐵
𝑚𝑎𝑥,𝑐ℎ
𝑖

− 𝐵𝑖,𝑡 , (8)

𝐵𝑎𝑣𝑙,𝑑 = −𝐵𝑚𝑎𝑥,𝑑𝑖𝑠𝑐ℎ
𝑖

− 𝐵𝑖,𝑡 . (9)

The change of net demand Δ𝐸𝑖,𝑡 is aggregated at the RA. The ag-

gregation succeeded in case 𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 =
∑
𝑖 Δ𝐸𝑖,𝑡 and satisfies the

requirements of the balancing market.

2.4 Battery Degradation Model
Battery degradation is defined as the phenomenon of the decrease

of battery capacity after utilization. This section briefly introduces

Millner’s battery degradation model [5]. Let 𝑋 𝑖𝑛𝑖𝑡
𝑓 𝑢𝑙𝑙

and 𝑋𝑓 𝑢𝑙𝑙 be

the initial (new) capacity and the current capacity. The ratio of the

degradation represented by 𝑆𝑂𝐻 is defined as follows:

𝑆𝑂𝐻 =
𝑋𝑓 𝑢𝑙𝑙

𝑋 𝑖𝑛𝑖𝑡
𝑓 𝑢𝑙𝑙

. (10)

Millner estimated battery degradation with the following degra-

dation model. Let 𝐿𝑐𝑦𝑐𝑙𝑒,𝑚 be the degradation ratios after𝑚 charge/

discharge iteration. 𝑆𝑂𝐻 after𝑀 charge/discharge iteration is de-

fined as follows:

𝑆𝑂𝐻 = 1 −
𝑀∑︁
𝑚

𝐿𝑐𝑦𝑐𝑙𝑒,𝑚 . (11)

Let 𝑆𝑂𝐶𝑠𝑤𝑖𝑛𝑔
and 𝑆𝑂𝐶𝑎𝑣𝑒 be the swing at the charge/discharge

cycle and the average SOC level. Then 𝐿𝑐𝑦𝑐𝑙𝑒,𝑚 is defined as follows:

𝐿𝑐𝑦𝑐𝑙𝑒,𝑚 = 𝐿2 · exp
[
𝐾𝑇 (𝑇𝐵 −𝑇𝑟𝑒 𝑓 ) ·

𝑇𝑟𝑒 𝑓 + 273

𝑇𝐵 + 273

]
, (12)

𝐿2 = 𝐿1 · exp
[
4𝐾𝑆𝑂𝐶 (𝑆𝑂𝐶𝑎𝑣𝑔 − 0.5)

]
·
(
1 −

𝑀−1∑︁
𝑚

𝐿𝑐𝑦𝑐𝑙𝑒,𝑚

)
, (13)
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𝐿1 = 𝐾𝐶𝑂 · exp
[
(𝑆𝑂𝐶𝑠𝑤𝑖𝑛𝑔 − 1)

𝑇𝑟𝑒 𝑓 + 273

𝐾𝐸𝑋 (𝑇𝐵 + 273)

]
+ 0.2

𝜏

𝜏𝑙𝑖 𝑓 𝑒
, (14)

where 𝐾𝐶𝑂 , 𝐾𝐸𝑋 , 𝐾𝑆𝑂𝐶 , and 𝐾𝑇 are the battery specific parameters.

𝑇𝑟𝑒 𝑓 and𝑇𝐵 are the reference and battery temperatures. 𝜏 represents

the time in seconds of the𝑚-th charge/discharge cycle, and 𝜏𝑙𝑖 𝑓 𝑒
denotes the total expected calendar life in seconds. Due to space

limitations, we omit a detailed explanation of the model.

The degradation model includes various physical parameters. On

the other hand, from an operation viewpoint, we still have potential

knobs 𝑆𝑂𝐶𝑠𝑤𝑖𝑛𝑔
and 𝑆𝑂𝐶𝑎𝑣𝑒 to control the battery degradation.

This paper’s idea is to control battery degradation through these

knobs during battery aggregation.

3 PROBLEM FORMULATION
We formulate the problem as a Markov Decision Process (MDP) to

handle it with a deep reinforcement learning algorithm. An MDP

consists of a set comprised of a state, an action, and a reward for

each time step 𝑡 . The agent decides action a𝑡 based on system state

s𝑡 and can observe new state s𝑡+1 and reward 𝑅𝑡 .

System state s𝑡 is defined as follows:

s𝑡 =
(
SOC𝑡 , 𝑆𝑡 , 𝐹

𝑟𝑒𝑞
𝑡 , 𝑡

)
, (15)

where SOC𝑡 is denoted as follows:

SOC𝑡 =
(
𝑆𝑂𝐶1,𝑡 , ..., 𝑆𝑂𝐶𝑁,𝑡

)
. (16)

Action a𝑡 is defined as the vector of the orders as follows:

a𝑡 =
(
𝑂1,𝑡 , ...,𝑂𝑁,𝑡

)
. (17)

The reward design is critical to efficiently train the agent. The

objectives of this problem are to extract the required flexibility and

minimize the battery degradation. Thus we introduce two reward

terms: 𝑟𝑐𝑟𝑒𝑎𝑡𝑒𝑡 and 𝑟
𝑑𝑒𝑔
𝑡 . The former denotes the reward by flexibility

extraction, and the latter denotes it by degradation control. We

define reward 𝑅𝑡 as follows:

𝑅𝑡 = 𝜔1 · 𝑟𝑐𝑟𝑒𝑎𝑡𝑒𝑡 − 𝜔2 · 𝑟𝑑𝑒𝑔𝑡 , (18)

where 𝜔1 and 𝜔2 are weight parameters that range from 0 to 1.

When we define 𝐹
𝑑𝑖 𝑓
𝑡 = 𝐹

𝑟𝑒𝑞
𝑡 − |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 |, reward term 𝑟𝑐𝑟𝑒𝑎𝑡𝑒𝑡 is

defined as follows:

𝑟𝑐𝑟𝑒𝑎𝑡𝑒𝑡 =

{
−(𝐹𝑑𝑖 𝑓𝑡 )2 (1 + 𝛿 ≥ |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 /𝐹𝑟𝑒𝑞𝑡 | ≥ 1 − 𝛿)
−𝑃 · (𝐹𝑑𝑖 𝑓𝑡 )2 (otherwise),

(19)

where 𝛿 and 𝑃 are the acceptable error and the penalty. In this model,

flexibility extraction succeeded if 1 + 𝛿 ≥ |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 /𝐹𝑟𝑒𝑞𝑡 | ≥ 1 − 𝛿 .
Otherwise, flexibility extraction failed, and a penalty is imposed.

Reward term 𝑟
𝑑𝑒𝑔
𝑡 is defined as follows:

𝑟
𝑑𝑒𝑔
𝑡 =

𝑁∑︁
𝑖=1

exp

[
4𝐾𝑆𝑂𝐶 (𝑆𝑂𝐶𝑎𝑣𝑒𝑖 − 0.5)

]
, (20)

where𝐾𝑆𝑂𝐶 and 𝑆𝑂𝐶𝑎𝑣𝑒
𝑖

are the battery parameters and the average

SOC level of prosumer 𝑖’s battery. The reward term by battery

degradation is based on the battery degradation model, especially

Eq. 13. Battery degradation is affected by the battery usage pattern,

especially the average level and the fluctuation, as explained in

Section 2.4. Therefore, the reward term from the battery degradation

Table 1: Overview of Experimental Results

Success MAE MAPE Lifetime [days]

Method Rate [%] [kW] [%] Min Ave Max

w/o 𝑟𝑑𝑒𝑔 63.6 1.77 12.5 1,889 6,903 10,781

w/ 𝑟𝑑𝑒𝑔 58.2 2.49 17.6 4,925 7,679 10,990

control includes the part of the degradation model affected by

battery usage.

4 EXPERIMENTAL RESULTS
We implemented our proposed algorithm in python to demonstrate

the efficiency of our proposed method. We trained the RA agent

using Proximal Policy Optimization [7]. The total training step is

3 × 10
6
steps, the learning rate is 2.5 × 10

−4
, the discount rate is

0.85, the clip range is 0.1, and the batch size is 256. For the reward

function in Eq. 18, the weight parameters of 𝜔1 and 𝜔2 are set to 1.

In this experiment, we assumed ten prosumers (𝑁 = 10), each of

whom has a battery with 11.2kWh capacity (𝐵
𝑐𝑎𝑝

𝑖
= 11.2). The time

resolution is five minutes, and each episode (one day) consists of 288

steps. We assume that a requirement is received every 30 minutes,

each of which is announced fiveminutes before the flexibility extrac-

tion begins. The requirements were randomly generated from every

possible combination of 𝑆𝑡 = {−1, 0, 1} and 𝐹𝑟𝑒𝑞𝑡 = {11.2, 14.0, 16.8}.
The flexibility is extracted in 10-minute durations.

Based on the received requests, the RA sends orders𝑂𝑖,𝑡 to all the

prosumers. In this experiment, we set 𝑂𝑖,𝑡 ∈ [−0.5, 0.5] due to the

efficiency of learning, the convenience of our preferred prosumers,

etc. We also set 𝛿 = 0.1, and flexibility extraction succeeded in case

1.1 ≥ |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 /𝐹𝑟𝑒𝑞𝑡 | ≥ 0.9. The battery parameters were from the

data sheet of Panasonic Li-ion battery LJB1156. The data set was

from the UMass Smart* Data Set [1].

In this experiment, the battery depleted its lifetime when 𝑆𝑂𝐻

reached 0.8, and the simulation was iterated until all the 𝑆𝑂𝐻s

of all the batterys reached 0.8. Our proposed method was evalu-

ated by both its aggregation results and battery lifetimes. Table 1

summarizes the experimental results. "w/o 𝑟𝑑𝑒𝑔" denotes the case

where the reward function does not include term 𝑟𝑑𝑒𝑔 . "w/ 𝑟𝑑𝑒𝑔"

denotes our proposed method, which is when the reward function

includes term 𝑟𝑑𝑒𝑔 . The success rate represents the ratio to satisfy

1 + 𝛿 ≥ |𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 /𝐹𝑟𝑒𝑞𝑡 | ≥ 1 − 𝛿 . MAE and MAPE were calculated

between required flexibility 𝐹
𝑟𝑒𝑞
𝑡 and extracted flexibility 𝐹 𝑡𝑜𝑡𝑎𝑙𝑡 .

As shown in Table 1, although the aggregation results worsened,

the battery lifetimes basically improved. For example, the success

rate fell by 5.4%, and MAPE increased by 5.1%. However, the aver-

age lifetimes improved by 11.2%, especially the minimum lifetime,

which drastically improved by 2.6 times.

Figure 3 shows the battery lifetime distribution. X-axis represents

battery IDs, and Y-axis represents their lifetimes. The lifetimes of

batteries #4, #7, and #8 were very short in case "w/o 𝑟𝑑𝑒𝑔". However,

the proposed method largely extended the lifetimes of these weak

batteries by 2-3 times. Thus, the average lifetime also rose by more

than 10%.

Figures 4 and 5 show the SOC traces (the first three days) of bat-

teries #7 and #8. The average SOC level of "w/ 𝑟𝑑𝑒𝑔" was obviously

473



RLEM ’22, November 9–10, 2022, Boston, MA, USA Nonaka, et al.

1 2 3 4 5 6 7 8 9 10
Battery #

0

2000

4000

6000

8000

10000

12000

14000

En
d 

of
 li

fe
 o

f b
at

te
ry

 [d
ay

s]

w/o rdeg
w/ rdeg

Figure 3: Battery Lifetime Distribution
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Figure 4: SOC Trace of Battery #7

lower than that of "w/o 𝑟𝑑𝑒𝑔" for both cases. Our proposed battery

aggregation includes a reward term for the battery degradation

model shown in Eq. 20. Thus the average SOC level fell, and we

expect battery degradation to improve with our proposed method.

5 CONCLUSION
This paper proposed a deep reinforcement learning-based battery

aggregation method by considering battery degradation. We in-

troduced Millner’s SOH model to control the unavoidable battery

degradation. The battery aggregation problem was formulated as a

Markov Decision Process (MDP) and solved using deep reinforce-

ment learning. Experimental results demonstrated the efficiency of

the proposed method. The average battery lifetime was improved

by 11.2%. Our proposed method largely extended the lifetimes of

weak batteries 2-3 times.

This is the first paper that addressed both aggregation and battery

degradation control. Our proposed method improved the battery
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Figure 5: SOC Trace of Battery #8

degradation, but the performance of the aggregation should be

improved more. Thus, improving aggregation is critical future work.
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