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PAPER
EV Aggregation Framework for Spatiotemporal Energy Shifting to
Reduce Solar Energy Waste∗

Kenshiro KATO†a), Daichi WATARI†b), Nonmembers, Ittetsu TANIGUCHI†c), and Takao ONOYE†d), Members

SUMMARY Solar energy is an important energy resource for a sustain-
able society and is massively introduced these days. Household generally
sells their excess solar energy by the reverse power flow, but the massive
reverse power flow usually sacrifices the grid stability. In order to utilize
renewable energy effectively and reduce solar energy waste, electric vehi-
cles (EVs) takes an important role to fill in the spatiotemporal gap of solar
energy. This paper proposes a novel EV aggregation framework for spa-
tiotemporal shifting of solar energy without any reverse power flow. The
proposed framework causes charging and discharging via an EV aggregator
by intentionally changing the price, and the solar energy waste is expected
to reduce by the energy trade. Simulation results show the proposed frame-
work reduced the solar energy waste by 68%.
key words: EV (Electric vehicle), EV aggregator, mixed integer program-
ming

1. Introduction

Solar energy is promising for a sustainable society and is
massively introduced these days. In order to utilize solar
energy effectively, the temporal and spatial gaps between
demand and supply become often problem. Photovoltaic
(PV) panel generates solar power during only the daytime,
and the temporal gap becomes a problem to use the energy
at the night. Spatial gap is another challenge because the
renewable energy source is often distributed. The battery
takes an important role to fill in the temporal gap and is of-
ten equipped for each house as well as the PV panel. Such
facilities effectively fill the temporal gap, and renewable en-
ergy can be used even at the night. In case the solar power
cannot be consumed/charged at the household due to un-
avoidable situations, the excess energy is often sold by the
reverse power flow to the grid. Selling the excess energy
brings the new opportunity to utilize the wasted renewable
energy at the other place, and the spatial gap is also filled
by this framework. However, the massive reverse power
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flow usually sacrifices the grid stability, and the other effec-
tive way is expected to utilize the solar energy without any
reverse power flow.

Electric vehicles (EVs) are becoming more and more
popular for low carbon emission, and charging stations are
placed everywhere these days. The EVs usually have a large
battery size for the long cruise distance, but the battery is not
used up in daily use in most cases. This means the EVs bat-
tery offers the opportunity to fill in the temporal and spatial
gaps between demand and supply, and many researches exist
related to solar energy and EVs [1]–[12]. These researches
mainly focus on the peak shaving and profit maximization,
and no research exists to minimize solar energy waste.

In this paper, we propose the novel EV aggregation
framework to reduce solar energy waste. Cui et al. proposed
the optimization framework of the EV’s battery scheduling
for the peak shaving [5]. Cui’s framework enables the EVs
not only to charge but also discharge on-site. Our EV ag-
gregation framework is inspired by Cui’s framework, which
enables the EVs to both charge and discharge on-site, and
buyouts the energy waste from energy-rich households. This
brings the reduction of solar energy waste without any re-
verse power flow. The trade of solar energy waste is caused
by the proposed pricing strategy. In order to collect the en-
ergy waste from the energy-rich and to distribute the waste to
the energy-poor, different prices are prepared for energy-rich
and energy-poor households, respectively.

The contributions of this paper are summarized as fol-
lows.

• We proposed the novel EV aggregation framework for
the reduction of solar energy waste. As a result, the
solar energy waste was reduced by up to 68% and the
purchased energy is also reduced by 13%.

• The tradeoff between the battery size and the impact of
EV aggregation is discussed.

The rest of the paper is organized as follows. Section 2
introduces the related work. The systemmodel and proposed
method are explained in Sect. 3 and Sect. 4, respectively. The
experimental results are shown in Sect. 5, and this paper is
concluded in Sect. 6.

2. Related Work

2.1 Researches on EV Aggregators

EVs have become increasingly popular in recent years, and
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Table 1 Researches on EV Aggregators.

Ref. Year Object Approach
[1] 2010 Peak shaving Charge/discharge scheduling
[2] 2010 Peak shaving Charge scheduling
[3] 2015 Maximizing profits Dynamic pricing
[4] 2017 Maximizing profits Dynamic pricing
[5] 2017 Peak shaving Charge/discharge scheduling
[6] 2018 Load reduction Dynamic pricing
[7] 2018 Peak shaving Charge/discharge scheduling
[8] 2018 Peak shaving Charge scheduling
[9] 2018 Peak shaving Dynamic pricing
[10] 2020 Maximizing profits Dynamic pricing

[11] 2020 Maximizing profits &
Peak shaving Dynamic pricing

[12] 2021 Maximizing profits Dynamic pricing

the demand load of the EVs charge is not negligible anymore.
The impact of many EVs charges may unstabilize the grid,
and EV aggregation is the potential way to alleviate them.
Table 1 summarizes the EV aggregation researches. The
first paper on EV aggregator was presented in 2010, and the
demand peak shaving was the important object. After that,
profit maximization became another important object, and
many researches were proposed under the various models
such as EV model, grid model, price model, traffic model,
etc. until now. Such aggregation was firstly performed by
the scheduling-based approach, but current cases are done
by the dynamic pricing-based approach. Based on the dy-
namic pricing, the charging and discharging behaviors are
controlled indirectly.

EV aggregation method toward the peak shaving has
been proposed [1], [2], [5], [7]–[9]. Sadeghianpourhamami
et al. [7] analyzed the usage patterns of EV charging stations,
and the charging/discharging schedule is optimized by this
knowledge. This research investigated the possibility of peak
shaving by controlling the charging of EVs based on this data.
Chen et al. [8] modeled and simulated EV charging schedule
patterns under different energy-consuming conditions, and
analyzed how EV’s charging behavior can affect the global
load characteristics. This research achieved to shave the peak
load by applying the appropriate charging patterns for EVs.

The pricing method on EV aggregator is proposed to
maximize the benefit of electricity trade [3], [4], [10]–[12].
Moghaddam et al. [11] proposed a price control method us-
ing reinforcement learning. This research achieved both peak
shaving and profit maximization for EV aggregators. How-
ever, these studies do not take into account the reduction of
solar energy waste. In our research, we aim to transmit solar
energy waste between households by EV’s charge/discharge
via EV aggregators. To the best of our knowledge, this is the
first paper to reduce solar energy waste by EV aggregation.

2.2 Researches on Consumer-Side Energy Management

Energy management methods of consumer-side such as
home, office building, etc. have been also investigated to
utilize the solar energy effectively. In [13]–[16], the main
object of these researches includes demand reduction and
peak shaving by the scheduling of the battery and smart
home appliances. Watari et al. [14] proposed an energy

Fig. 1 System model: household model and EV aggregator model.

management method that takes into account battery manage-
ment. This research achieved efficient battery management
and household profit maximization. This research is com-
plementary research on EV aggregator because this paper
focuses mainly on EV and EV aggregator. In our research,
we suppose the household model includes the house and EV,
and the effective EV aggregation framework is proposed be-
tween EV aggregator and EVs belonging to these household
models. Our household model assumes the energy manage-
ment support to maximize the benefit, and the EV’s behavior
is decided by them.

3. System Model

This section introduces the systemmodel of the proposed EV
aggregation framework. In this research, we assume a sce-
nario in which a conventional charging station is replaced by
EV aggregator which is capable of charging and discharging
with EVs. Figure 1 shows the system model of the proposed
framework. The system model is composed of I household
models including the EV and one EV aggregator model. The
purpose of this research is to reduce the solar energy waste
by spatiotemporal shifting of them through EVs based on the
interaction between the household model and EV aggregator
model.

3.1 Household Model

As shown in Fig. 1, each household has PV panel, electric
load, battery, power router, and EV. The residents use the EV
to travel between their homes and the EVaggregator. TheEV
is regarded as another fixed batterywhen the EV is connected
to the house. The power router receives the price information
of the EV aggregator, and the EV can sell/buy the energy
by discharging/charging at the EV aggregator. The power
router calculates the battery scheduling to minimize the elec-
tricity bill and tomaximize the profit. During on-peak hours,
i.e., when the grid is over-generated in the daytime, selling
electricity at households (reverse power flow) is prohibited
because it has a negative impact on the grid. During off-
peak hours, households can reverse power flow their excess
solar energy to the grid. If the batteries are full and the PV
generation cannot be consumed, the excess solar energy is
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Fig. 2 Physical structure of the EV aggregator.

discarded as wasted energy or sell electricity to the grid. The
power router sends the EV battery schedule (the schedule of
charge/discharge at EV aggregator) and the energy budget to
the EV aggregator for every time interval. Additionally, the
power router receives the latest price information from the
EV aggregator, and the scheduling is iteratively performed
under the latest information. The household model and EV
aggregator model iteratively perform these interactions.

3.2 EV Aggregator Model

The EV aggregator is assumed to serve as both a large-scale
parking facility and a charging station. Figure 2 shows the
physical structure of EV aggregator. We assume a physi-
cal structure a parking lot with a large battery connected to
it. The EV aggregator is equipped with charging and dis-
charging facilities and a large fixed battery. The system is in
which batteries and charging/discharging facilities are con-
nected under the connecting point to the grid. A sufficient
number of charging/discharging facilities are equipped, and
the EVs connect anytime arrived. Hence, multiple EVs can
charge and discharge the electricity at the same time. The
EV aggregator also has the price agent to decide the price
information for energy trade with EVs. The EV aggrega-
tor receives the EV battery schedule and the energy budget
from the household in advance. All the energy requests of
EV charging/discharging is handled by the fixed battery of
the EV aggregator. If the EV’s charging demand cannot be
satisfied due to the battery shortage of the EV aggregator,
the EV aggregator purchases the energy from the grid. Con-
versely, if the EV’s discharging energy cannot be charged
to the EV aggregator battery because of fully charged, the
excess energy is sold to the power company.

In electricity trading, we assumed that the EV aggre-
gator set the selling electricity price higher than the buying
price from EVs. Under this assumption, the energy-rich
households are expected to sell their wasted energy to the
EV aggregator rather than wasted it inside households. On
the other hand, the energy-poor households are expected to
purchase electricity from EV aggregators because the selling
price of EV aggregators is lower than the price of the grid. In
this way, the EV aggregator gets a profit through electricity
trading. However, the main objective of EV aggregators is
only how much wasted energy can be shifted. Therefore,

Fig. 3 Overview of the spatiotemporal energy shifting method.

the EV aggregator determines the prices according to its
objectives. In order to collect the energy waste from the
energy-rich and to distribute the waste to the energy-poor,
the EV aggregator classifies the EVs into two groups based
on the energy budget. If the households plan to waste the
energy, the households are classified into Group A – energy-
rich group. If the households have no energy waste, the
households are classified into Group B – energy-poor group.
The price agent settles two types of prices for Group A and
Group B, and the corresponding price is sent to the house-
hold model. The price agent updates these prices based on
the battery sufficiency level of the EV aggregator and the
power sufficiency of each household. These prices are sent
to households via the internet.

4. Spatiotemporal Energy Shifting Method

This section proposes the spatiotemporal shifting method of
solar energy waste. The objective is to reduce the solar en-
ergy waste by spatiotemporally shifting the waste between
the households and the EV aggregator via the EV. To this
end, we focus on the interaction between household and EV
aggregator. Figure 3 shows an overview of our proposed
method. The proposed method is divided into two phases;
Phase I: household battery scheduling for electricity bill min-
imization and Phase II: battery scheduling and price update
at EV aggregator. Phase I and Phase II are iteratively exe-
cuted to induce a spatiotemporal shift of wasted energy. In
this research, online algorithm is assumed. This means that
the household can flexibly update their behavior at each con-
trol time according to the household’s energy situation and
the EV aggregator’s price. The EV aggregator’s prices and
household behavior are corrected by iterative calculations,
then they naturally converge.

In Phase I, each household decides the battery schedule
and purchased energy tominimize their electricity bill. Input
is selling/buying prices at the aggregator and forecasting data
of PV generation and electricity demand. Each household
sends the EV battery schedule and the energy budget to the
EV aggregator.

In Phase II, the EV aggregator collects all EV battery
schedules, which represent the requests to charge/discharge,
and the energy budget. Based on the requests, the EV ag-
gregator schedules the own battery and purchased energy
from the grid and wasted energy to the grid. Then, the EV
aggregator updates the selling and buying prices. The EV
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Fig. 4 Phase I: Scheduling to minimize the electricity bill of the house-
hold.

aggregator prepares two prices for the energy-rich and the
energy-poor groups, which is classified based on the energy
budget, and corresponding price is sent to the household.
Then the EV battery schedules are updated with the new
prices again. Following subsections explain the details of
each phase.

4.1 Phase I: Household Battery Scheduling for Electricity
Bill Minimization

Figure 4 shows an overview of Phase I. In Phase I, each
household performs the battery scheduling to minimize the
electricity bill. We formulate the problem by MIP (Mixed
Integer Programming) for each household, and the planning
period is 0 ≤ u < U. The problem formulation is based on
the previous research [17].

Let BhIN
u ,BhOUT

u ,Bv INu ,BvOUT
u ,Su,Bu,Qu,Yu, Zu be

the household battery’s charged/discharged energy, the EV
battery’s charged/discharged energy while connected to
household, the selling/buying energy at EV aggregator, the
energy of reverse power flow, the wasted energy, and the
purchased energy at time u, respectively. These variables
become the decision variables.

Let BSh,SOCh,SOCh be the household battery size,
the upper/lower bounds of the state of charge (SOC) level,
respectively. The remaining energy of the household battery
Xhu must satisfy the following formula for every time u.

SOCh ≤
Xhu
BSh

≤ SOCh 0 ≤ u < U (1)

Additionally, the remaining energy Xhu can be updated by
the following equation.

Xhu+1 = Xhu + BhIN
u − BhOUT

u 0 ≤ u < U − 1 (2)

The remaining energy in the EV’s battery Xvu is rep-
resented in the same way. Let BSv,SOCv,SOCv be the
EV’s battery size, the upper/lower bounds of the SOC level,
respectively. The remaining energy Xvu must satisfy the
following formula for every time u.

SOCv ≤
Xvu
BSv
≤ SOCv 0 ≤ u < U (3)

Since the EV drives between the household and the EV ag-
gregator, the remaining energy can be updated in a different
way under the situation. The situation of EV is represented
by the variable dsu , and dsu takes zero, one, and two in

the case connected to the household, driving, and connected
to EV aggregator, respectively. Then the EV’s remaining
energy Xvu can be updated by the following equation.

Xvu+1 =


Xvu + Bv INu − BvOUT

u if dsu = 0
Xvu − H if dsu = 1
Xvu − Su + Bu if dsu = 2

0 ≤ u < U − 1 (4)

Notice that the driving energy consumed for every time step
can be represented by the constant value H for simplicity.
The charge/discharge to the EV’s battery are only allowed in
case dsu = 0, in case the EV is connected to the household.
This means that Bv INu and BvOUT

u are kept zero in case dsu
takes one or two, in case the EV is not connected to the
household. In the same way, the energy selling/buying at
EV aggregator are also allowed in case dsu = 2, in case the
EV is connected to the EV aggregator. Thus Su and Bu are
kept zero in case dsu takes zero or one, in case the EV is not
connected to the EV aggregator.

LetGu , Du be the PVgeneration, the electricity demand
at time u, respectively. The power flow within the household
should keep the following constraint.

Zu + Gu + BhOUT
u + BvOUT

u

− (Qu + Yu + Du + BhIN
u + Bv INu ) = 0 0 ≤ u < U

(5)

The constraint equations about excess solar energy are
defined as follows.

Qu = 0 if on-peak (6)
Yu = 0 otherwise (7)

During on-peak hours, i.e., when the grid is over-generated
in the daytime, the household is prohibited to reverse power
flow to keep the grid stable. Therefore, the excess solar
energy is discarded as wasted energy. During off-peak hours,
reverse power flow is possible, then there is nowasted energy.

An object of this problem is to minimize the electricity
bill. In case Ru , Psu , and Pbu represent the electricity price
of the grid, selling/buying prices at the EV aggregator at time
u, respectively, the objective function can be represented as
follows.

minimize :
U−1∑
u=0
{Ru · Zu − (Psu · Su − Pbu · Bu)} (8)

The objective function does not consider reverse power flow.
Japanese electric power companies (e.g., Kansai Electric
Power Company, Inc.) generally allow reverse power flow
only for PV generation energy. Therefore, this model does
not include reverse power flow in the objective function to
prevent reverse power flow from batteries. In this model, we
assumed Time-of-Use (TOU) pricing. TOU pricing offers
two types of pricing based on time: peak price and out of
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Fig. 5 Phase II: Scheduling of aggregator battery and price update based
on the battery sufficiency.

peak price. Then Ru is defined as follows. Then Ru is
defined as follows.

Ru =

{
Rhigh if peak-time
Rlow otherwise

(9)

where Rhigh and Rlow mean the peak price and out of peak
price, respectively.

As explained in previous section, the household model
sends the EV battery schedule and the energy budget to EV
aggregator at every time intervals. Su , Bu , Gu and Du are
sent to the EV aggregator as the EV battery schedule and the
energy budget.

4.2 Phase II: Battery Scheduling and Price Update at EV
Aggregator

Figure 5 shows an overview of Phase II. In Phase II, the EV
aggregator collects all EV battery schedules, which repre-
sent the request to charge/discharge, and the energy budget.
Based on the requests, the EV aggregator optimizes the own
battery schedule and updates the selling and buying prices
based on the battery remaining amount. The EV aggregator
prepares two prices for Group A and Group B, the energy-
rich and the energy-poor groups which is classified based
on the energy budget. Then the corresponding price is sent
to the household, and the EV battery schedule is updated
again. Through these iteration, this research aims that the
energy waste from the energy-rich is indirectly supplied to
the energy-poor via EVs and EV aggregator.

4.2.1 Battery Scheduling

In this section, we formulate the battery scheduling of the EV
aggregator based onMIP (Mixed Integer Programming). For
given all EVbattery schedules, theEVaggregator decides the
own battery schedule to minimize the sum of the purchased
energy and the reverse power flow. The planning period is
0 ≤ u < U. The EV aggregator received the EV battery
schedule and the energy budget from EV i, and the range of
i is 0 ≤ i < I. In this section, Su , Bu , Gu and Du from EV i
are renamed as Si,u , Bi,u , Gi,u and Di,u , respectively.

Let Vu , Wu be the purchased energy from the grid, the

reverse power flow to the grid from EV aggregator at time u,
respectively. These variablesVu andWu become the decision
variables.

Let BSst,SOCst,SOCst be the EV aggregator’s battery
size, the upper/lower bounds of the SOC level, respectively.
The remaining energy of the EV aggregator’s battery Xsu
must satisfy the following formula for every time u.

SOCst ≤
Xsu
BSst

≤ SOCst 0 ≤ u < U (10)

The remaining energy of the EV aggregator’s battery
Xsu can be updated by the following equation.

Xsu+1 = Xsu + Vu −Wu +

I−1∑
i=0
(Si,u − Bi,u)

0 ≤ u < U − 1 (11)

The objective function is also defined as follows.

minimize :
U−1∑
u=0

Vu +

U−1∑
u=0

Wu (12)

Solving this problem, the EV aggregator decide the own
battery schedule for given all EV battery schedules.

4.2.2 Price Update

In order to minimize the energy waste by supplying from
the energy-rich to the energy-poor via EVs and EV aggre-
gator, EV aggregator classified the arriving EVs into two
groups based on the energy budget: Group A – energy-rich
group and Group B – energy-poor group. EV aggregator
discriminates group A and group B based on the balance
of daily household’s generation and demand at each control
time. Households that more generate energy are classified
into Group A. Conversely, households that more demand are
classified into Group B. Let EVA, EVB be the set of EVs
in Group A and Group B, respectively. EVA and EVB are
defined as follows.

EVA =

{
i ∈ I

�����U−1∑
u=0

Di,u ≤

U−1∑
u=0

Gi,u

}
(13)

EVB =

{
i ∈ I

�����U−1∑
u=0

Di,u >

U−1∑
u=0

Gi,u

}
(14)

EV aggregator prepares the two prices for EVA and EVB,
and this section introduce the price update method for these
groups.

In this research, the households discard the excess solar
energy as wasted energy during on-peak hours. Not to waste
the solar energy in the households, EV aggregators buy en-
ergy from households via EVs. Let PbA

u and PbBu be the
buying prices from the households in Group A and Group
B, respectively. PbA

u and PbBu become as follows.
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PbA
u = PB 0 ≤ u < U (15)

PbBu = PB 0 ≤ u < U (16)

where PB means the constant price to buy the wasted energy.
As explained in Sect. 4.1, Time-of-Use (TOU) pricing

is supposed in this research, and two type of prices are pre-
pared: Rlow and Rhigh . To cause the spatiotemporal shifting
of solar energy waste, EV aggregator needs to distribute the
wasted energy mainly to the energy-poor. In addition, EV
aggregator set the selling electricity price higher than the
buying price from EVs in order not to lose money. Thus, EV
aggregator prepares the constant buying price PB and three
constant selling prices PSlow , PSmiddle and PShigh to keep
the following relation.

PB ≤ PSlow < Rlow ≤ PSmiddle < Rhigh ≤ PShigh
(17)

PSlow , PSmiddle and PShigh are selected for EVA and EVB.
Let PsAu , PsBu be the selling prices to the households

in Group A and Group B, respectively. PsAu and PsBu are
selected as follows.

PsAu = PShigh 0 ≤ u < U (18)

PsBu =


PShigh if Xsu

BSst < SOCst
LB

PSmiddle if SOCst
LB ≤

Xsu
BSst < SOCst

UB

PSlow otherwise
0 ≤ u < U, (19)

where SOCst
LB and SOCst

UB mean the lower-border and upper-
border of the SOC level. This pricing policy is expected
to distribute the collected solar energy waste mainly to the
household in EVB. Therefore, the highest selling price
PShigh is always applied to the household in EVA. In this
way, the EV aggregator collects wasted energy from Group
A and distributes it to Group B.

5. Experimental Results

In this section, we explain simulation experiments to demon-
strate the effectiveness of our proposed framework. The ex-
perimental setup is first described, and then the case studies
are performed under different scenarios. In Sect. 5.1, we
show the effectiveness of the proposed framework in reduc-
ing solar energy waste. In Sect. 5.2, we discuss the trade-off
between the battery size and the impact of the EV aggregator.

In this experiment, the number of households I in the
framework is 100. A planning period of the optimiza-
tion problem is 24 hours with 30 minutes resolution, i.e.,
U = 48. The simulation period is 90 days, and the proposed
method run once every 30 minutes during simulation period.
The optimization problem is described and solved using the
mathematical programming solver IBM ILOG CPLEX Op-
timization studio v.12.7 [18]. The other parameter settings
are shown in Table 2. The on-peak hours (when reverse
power flow is prohibited) were set to be 7 am to 11 pm the
same as the peak-time of the Time-of-Use (TOU) price. The

Table 2 Parameter setting.

Parameter Value Unit
BSh 5, 10, 15 kWh
SOCh 1.0 -
SOCh 0.1 -
BSv 40, 60, 80, 100 kWh
SOCv 1.0 -
SOCv 0.1 -
on-peak 7 : 00 − 23 : 00 -
peak-time 7 : 00 − 23 : 00 -
Rhigh 21.27 JPY/kWh
Rlow 10.51 JPY/kWh
BSst 1000 kWh
SOCst 1.0 -
SOCst 0.1 -
PB 5 JPY/kWh
PSlow 8 JPY/kWh
PSmiddle 16 JPY/kWh
PShigh 21.27 JPY/kWh
SOCst

LB 0.5 -
SOCst

UB 0.75 -

grid’s TOU price divides prices between daytime and night-
time, so we followed this setting. BSh and BSv are chosen
one parameter from Table 2, respectively. The initial state
of charge (SOC) of the household battery, EV battery, and
EV aggregator battery is set to 0.5. We assume that the
EV is randomly used from 9:00 to 22:00 with an average of
5 hours, and its period includes driving and parking. The
power demand and power generation data used as household
profiles are measured in New South Wales, Australia [19].

In this experiment, we confirm whether the proposed
method can effectively utilize wasted energy. For this pur-
pose, in addition to the proposed method, we also simulated
the case where only charging stations are used without EV
aggregator.

5.1 Effectiveness in Reducing Wasted Energy

In this section, we evaluate the effectiveness of the proposed
framework in reducing solar energy waste. We use nine sce-
narios with different EV utilization frequencies and numbers
of Group A and Group B respectively, as shown in Table 3.
In these scenarios, we assume that the EV is used 2 or 4
times per week, or every weekday and randomweekend. For
example, Scenario 5 shows that all households use an EV
aggregator four times a week, and 50 out of 100 households
are Group A. In the experimental scenarios, we discriminate
between Group A and Group B by the total balance of elec-
tricity demand and generation over a 90-day period, based
on Eqs. (13) and (14). We set BSh and BSv to 10 kWh and
to 40 kWh, respectively.

Firstly, we introduce some metrics to evaluate the per-
formance of the proposed framework. An overview of the
simulation outputs is shown in Fig. 6, and the detailed de-
scription of the outputs is given in Table 5. Fig. 6 shows
the flow of energy between EV aggregators, households, and
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Table 3 Scenarios.
EV utilization frequency Number of households in

Twice a week Four times a week Every weekday Group A / Group B
+Random weekends

Scenario 1 × 30 / 70
Scenario 2 × 30 / 70
Scenario 3 × 30 / 70
Scenario 4 × 50 / 50
Scenario 5 × 50 / 50
Scenario 6 × 50 / 50
Scenario 7 × 70 / 30
Scenario 8 × 70 / 30
Scenario 9 × 70 / 30

Table 4 EV aggregator’s power balance and reduction percentages of purchased energy and wasted
energy of households.

E1 (kWh) E2 (kWh) E3 (kWh) E4 (kWh) EV aggregator’s profit (JPY) αpurchase (%) αwasted (%)
Scenario 1 5,651 5,664 0 0 64,449 4 59
Scenario 2 4,568 4,715 0 0 71,908 3 62
Scenario 3 2,328 2,419 0 0 40,165 1 43
Scenario 4 10,018 10,036 0 0 80,278 9 57
Scenario 5 8,486 8,682 0 0 124,861 7 67
Scenario 6 4,821 4,942 0 0 81,017 3 51
Scenario 7 15,622 15,582 0 0 69,311 18 55
Scenario 8 14,303 14,445 0 0 169,590 13 68
Scenario 9 8,778 8,894 0 0 143,843 8 57

Table 5 Summary of output.

Output Description
E1 Amount of electricity supplied from Group A

to EV aggregator
E2 Amount of electricity supplied

from EV aggregator to Group B
E3 Amount of electricity supplied from EV aggregator to grid
E4 Amount of electricity supplied from grid to EV aggregator

the power grid. The reduction percentage of wasted energy
αwasted and the reduction percentage of purchased energy
αpurchase are given by Eqs. (20) and (21). Yi and Y ′i repre-
sent the total amount of wasted energy of household i in the
case with and without EV aggregator, respectively. Zi and
Z ′i also represent the total amount of purchased energy from
only the grid of household i in the case with and without
EV aggregator, respectively. This means that the purchased
energy at the EV aggregator is not included in Zi .

αwasted =

∑I−1
i=0 Y ′i −

∑I−1
i=0 Yi∑I−1

i=0 Y ′i
· 100 (20)

αpurchase =

∑I−1
i=0 Z ′i −

∑I−1
i=0 Zi∑I−1

i=0 Z ′i
· 100 (21)

The experimental results for each scenario are shown
in Table 4. The results in Table 4 show that households
trade electricity in the EV aggregator in all scenarios. The
result of E1 shows that energy is transmitted from Group
A to EV aggregators. The result of E2 shows that energy is
transmitted from EV aggregators to Group B. In all scenario,
E1 almost equal to E2. In the EV aggregator pricing, when
the EV aggregator purchases energy from Group A, the EV

Fig. 6 Overview of energy shifting.

aggregator shows a lower price to Group B than the price of
the grid. As a result, Group B buys almost all the energy
that Group A sells to EV aggregator. In addition, the EV
aggregator did not sell the energy purchased from Group A
to the grid. This is because the EV aggregator minimized
the energy purchased and sold with the grid, as set in the EV
aggregator’s objective function. Therefore, E1 and E2 are
almost the same amounts. The results of E3 and E4 in Table 4
confirm that the EV aggregator neither sold power to the
power grid nor purchased energy from the power grid. The
results of the EV aggregator’s profit in Table 4 show that the
EV aggregator gets profits for all scenarios even though the
objective function of our proposed method does not consider
maximizing profits. However, profit is not large because it is
not themain objective to be profitable. These results indicate
that the energy shifting through the EV aggregator has been
achieved without the purchased/sold energy from/to the grid.

As shown in Table 4, αpurchase and αwasted are pos-
itive. In all scenarios, the purchased energy and wasted
energy of households are reduced by using the proposed
method. In Scenario 8, it is confirmed that the proposed
method can reduce the wasted energy by 68% at most with-
out reverse power flow. In the same scenario, by shifting the
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Fig. 7 Wasted energy per battery size in Scenario 4.

Fig. 8 Wasted energy per battery size in Scenario 5.

Fig. 9 Wasted energy per battery size in Scenario 6.

reduced wasted energy to Group B, purchased energy from
the grid was reduced by 13%. In comparison between Sce-
nario 1 and Scenario 7, αpurchase increase while αwasted is
almost the same when the Group A ratio is increased. An
increase in αpurchase indicates a reduction in the amount of
purchased energy from the grid by households. Comparing
Scenarios 1 and 7, the number of energy-rich households in-
creases in Scenario 7. This means that the number of house-
holds with more PV generation is increased, so the total
amount of wasted energy is increasing. Therefore, the pro-
posed method can shift more energy from Group A to Group

Fig. 10 Purchased energy per battery size in Scenario 4.

Fig. 11 Purchased energy per battery size in Scenario 5.

Fig. 12 Purchased energy per battery size in Scenario 6.

B via EV aggregator. As a result, the amount of purchased
energy reduced in Group B, and αpurchase also reduced. On
the other hand, while the total amount of wasted energy is
increasing in Scenario 7, the energy that is transmitted from
Group A to EV aggregators (E1) is also increased. There-
fore, the reduction percentage of wasted energy remained
the same, and there is almost no change in αwasted . These
results show that, under all scenarios, the proposed method
can shift solar energy waste between Group A and Group B
through an EV aggregator without reverse power flow.
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5.2 Impact of Battery Size on Proposed Method

In this section, we discuss the impact of the battery size on the
proposed method with the different sizes of EV batteries and
household batteries. In this experiment, we use Scenarios 4,
5, and 6 in Table 3. We evaluated the all combinations of
BSh and BSv for these scenarios.

Figure 7, Fig. 8 and Fig. 9 show the amount of wasted
energy in case with and without EV aggregator in Scenarios
4, 5, and 6, respectively. The x-axis means the battery size
combination. The left y-axis gives the amount of wasted en-
ergy, and the right y-axis indicates the reduction percentage
of wasted energy αwasted . The red line indicates αwasted ,
and the blue and green bars denote the amount of wasted en-
ergy in case without EV aggregator and with EV aggregator,
respectively.

In all cases, we can see the amount of wasted energy is
successfully reduced by introducing the EV aggregator. The
amount of reduction depends on the battery size combination
and the scenarios. In Scenario 4, EVs are not utilized fre-
quently, and the impact of EV aggregator and large battery
size is quite high. On the other hand, in Scenario 6, EVs are
frequently utilized, and the impact of the EV aggregator is
relatively not so high because the wasted energy is smaller
than the other scenarios.

Figure 10, Fig. 11 and Fig. 12 show the amount of pur-
chased energy in case with and without EV aggregator in
Scenarios 4, 5, and 6, respectively. The x-axis means the
battery size combination. The left y-axis gives the amount
of purchased energy, and the right y-axis indicates the re-
duction percentage of purchased energy αpurchased . The
red line indicates αpurchased , and the blue and green bars
denote the amount of purchased energy in case without EV
aggregator and with EV aggregator, respectively.

In all cases, the purchased energy is slightly reduced
by EV aggregator. The amount of purchased energy is over-
whelmingly larger than that of wasted energy, and we can
see the reduction percentage as relatively small. However,
the reduced wasted energy by EV aggregator is utilized by
the energy-poor, and this means the energy-poor needs not
to purchase that of energy. Thus we can observe that the
reduced amount of wasted energy caused by the EV aggre-
gator corresponds to that of purchased energy. αpurchase de-
creases as EV battery size increases in Scenario 6 in Fig. 12
as opposed to Scenarios 4 and 5. In Scenario 6, EVs are
frequently utilized, and shifted energy via EV aggregator
decreases because the wasted energy is smaller than in the
other scenarios. αpurchase decreases because shifted energy
decreases for purchased energy reduction.

From the above experimental results, it was confirmed
that the proposed method is useful in terms of the reduction
of wasted solar energy and distribution of them, regardless
of the battery size.

6. Conclusion and Future Work

We proposed the novel EV aggregation framework for spa-
tiotemporal shifting of solar energy without any reverse
power flow to the grid. In this framework, the spatiotem-
poral shifting of solar energy waste is caused based on the
interaction between the household model and the EV ag-
gregator model. For the shifting of wasted energy, we also
proposed a pricing method at EV aggregator. Experimental
results have shown that the proposed method can be used
to reduce wasted energy through the EV aggregator under
any scenario. In the best case, we achieved a 68% reduction
in solar wasted energy. The future work includes the im-
provement of the system model by taking into account price
elasticity on the household side in electricity trading at EV
aggregator. In addition, more detailed EV battery models
and EV usage models must be considered.
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