High resolution consumer camcorders are widely used

Various kinds of noise are included in video taken by camcorders

- It is difficult to separate each noise from resulted video, since the current camcorder system is complex, achieving high performance with compact body
Objectives

- In development of consumer camcorders, noise is evaluated subjectively by video quality specialists using prototypes
 - This scheme requires much man-hours and limits the turn around time
- An efficient noise evaluation scheme is high required
 - Noise evaluation scheme for consumer camcorders
 - Real-time noise evaluation systems
 - Noise characteristics for each camcorder mode is investigated
 - Detailed evaluation of noise in camcorders is carried out, which includes evaluation of temporal change of noise
Overview of noise evaluation

- Environment of noise evaluation
 - Video sequences taken in completely dark room are used
 - Six camcorders are used in this experiment
 - Totally 34 pattern video sequences are used, since there several recording option for each

- Noise evaluation method
 - Difference of noise among models and settings are evaluated
 - Fixed pattern noise is used for this evaluation
 - Metrics of noise evaluation for still cameras can be used
 - When we evaluate noise in video sequence, we have to pay attention to not only spatial noise component but also temporal component
Detail of noise evaluation

- **Evaluation method**
 - Utilizing the following data
 - **Average frame**
 - Random noise is suppressed, and pattern noise is emphasized
 - **RMS granularity**
 - See the noise strength and temporal change of noise
 - One frame data
 - Line data
 - \((f(x), g(y), h(t)); \text{ given by the right equations}\)
 - Dark frame data used in flat fielding

- **Noise Evaluation**
 \[I'(x, y) = \sum_{t=0}^{T} I(x, y, t) \]

- **One frame**
 \[I_t(x, y) \]

- **Line data**
 \[f(x) = \sum_{y=0}^{H} I'(x, y) \]
 \[g(y) = \sum_{x=0}^{W} I'(x, y) \]

- **Dark frame data**
 \[h(t) = E[I_t(x, y)] \]

\[I''(x, y) = \text{Med} \left(I_0(x, y), I_1(x, y), \ldots, I_T(x, y) \right) \]